If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-3x-6.75=0
a = 1; b = -3; c = -6.75;
Δ = b2-4ac
Δ = -32-4·1·(-6.75)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-3)-6}{2*1}=\frac{-3}{2} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-3)+6}{2*1}=\frac{9}{2} =4+1/2 $
| 11a=18a+21a+9= | | 5x-39=3(3x-3)+2 | | -24=2(4x-4) | | 2(4x-4)=5x-29 | | 7x-7=6x-17 | | 13x+15=3x-65 | | 123+12/x+5=1 | | 0.7*x+0.3*9=6 | | 4x-2=10(x=0) | | 2/3×3/5x=8 | | x+0.2x=535000 | | 6x+10=20x+20 | | x/x+5=0,2 | | 4x+5=23-5x | | 6x–5=12x+13 | | 4-y/2-y+1/3=1/4 | | 100=0.1x^-x | | 3(2x-10)+40/10=2x+2 | | b=100-90 | | (6x+7)-28=3 | | 6=4/(1-r) | | 6=4/1-r | | y3+10y2-9y-90=0 | | (5)/(3x+1)=12 | | 2-(10x+2)=6x-80 | | x2-6x=27 | | (5)/36x=12 | | a=3,2-4a | | 4-(3x)/2=3x+5 | | a={1,2,3} | | 2+(4x)/3-7=1 | | 3x^2+2x-1/2x=0 |